top of page
  1. Eline J. H. van Hugte, Elly I. Lewerissa, Ka Man Wu, Nicky Scheefhals, Giulia Parodi, Torben W. van Voorst, Sofia Puvogel, Naoki Kogo, Jason M. Keller, Monica Frega, Dirk Schubert, Helenius J. Schelhaas, Judith Verhoeven, Marian Majoie, Hans van Bokhoven and Nael Nadif Kasri (2023) SCN1A-deficient excitatory neuronal networks display mutation-specific phenotypes. Brain awad245

  2. Wang, S. et al. (2022) Loss-of-function variants in the schizophrenia risk gene SETD1A alter neuronal network activity in human neurons through cAMP/PKA pathway Cell Reports 39(5)

  3. Kogo N., Froyen V. (2021) How global configurations are reflected in figure-ground perception: large-scale consistencies and neural interactions in border-ownership computation. Psychological Review 128(4), 597-622.

  4. Kogo N., Kern, F.B., (2021) Nowotny, T., van Ee, R., van Wezel, R., Aihara, T. (2021) Dynamics of a mutual inhibition circuit between two visual cortical neurons compared to human perceptual competition. Journal of Neuroscience 41(6), 1251-1264.

  5. Alp N., Kohler P.J., Kogo N., Wagemans J., Norcia A.M. (2018) Measuring Integration Processes in Visual Symmetry with Frequency-Tagged EEG. Scientific Reports, 8(1), 6969.

  6. Vergeer M., Kogo N., Nikolaev A.R., Alp N., Loozen V., Schraepen B., and Wagemans, J. (2018) EEG frequency tagging provides a neural signature of holistic shape representations learned during shape categorization. Vision Research, 152, 91-100.

  7. Alp N., Nikolaev A., Wagemans J., Kogo N. (2017) EEG frequency tagging dissociates between neural processing of motion synchrony and human quality of multiple point-light dancers. Scientific Reports, 7, 44012.

  8. Alp N., Kogo N., Van Belle G., Wagemans J., Rossion B. (2016). Frequency tagging yields an objective neural signature of Gestalt formation. Brain and Cognition, 104, 15-24. (double first author)

  9. Kogo, N., Trengove, C. (2015). Is predictive coding theory articulated enough to be testable? Frontiers Computational Neuroscience, 111.

  10. Kogo, N., van Ee, R. (2015). Neural mechanisms of figure-ground organization: Border-ownership, competition and perceptual switching. In Oxford Handbook of Perceptual Organization (pp. 352–372). Oxford: Oxford University Press.

  11. Kogo, N., Hermans, L., Stuer, D., van Ee, R., Wagemans, J. (2015). Temporal dynamics of different cases of bi-stable figure-ground perception. Vision Research, 106, 7–19.

  12. Kogo, N., Drożdżewska, A., Zaenen, P., Alp, N., Wagemans, J. (2014). Depth perception of illusory surfaces. Vision Research, 96, 53–64.

  13. Wagemans, J., Kogo, N. (2013). On perceptual multi-stability in figure-ground organization. In Handbook of Computational Perceptual Organization. New York: Oxford University Press.

  14. Kogo, N., Wagemans, J. (2013a). The emergent property of border-ownership and the perception of illusory surfaces in a dynamic hierarchical system. Cognitive Neuroscience, 4(1), 54–61.

  15. Kogo, N., Wagemans, J. (2013b). The “side” matters: How configurality is reflected in completion. Cognitive Neuroscience, 4(1), 31–45.

  16. Kogo, N., Galli, A., Wagemans, J. (2011). Switching dynamics of border ownership: A stochastic model for bi-stable perception. Vision Research, 51(18), 2085–2098.

  17. Kogo, N., Wagemans, J. (2011). What is required for a signal to be qualified as a “grouping” tag? British Journal of Psychology, 102(3), 676–681; author reply 682–683.

  18. Dry, M. J., Kogo, N., Putzeys, T., Wagemans, J. (2010). Image descriptions in early and mid-level vision: what kind of model is this and what kind of models do we really need? British Journal of Psychology, 101(Pt 1), 27–32; author reply 41–46.

  19. Kogo, N., Van Gool, L., Wagemans, J. (2010). Linking depth to lightness and anchoring within the differentiation-integration formalism. Vision Research, 50(15), 1486–1500.

  20. Kogo, N., Strecha, C., Van Gool, L., Wagemans, J. (2010). Surface construction by a 2-D differentiation-integration process: A neurocomputational model for perceived border ownership, depth, and lightness in Kanizsa figures. Psychological Review., 117(2), 406–439.

  21. Ariel, M., Kogo, N. (2005). Shunting inhibition in accessory optic system neurons. Journal of Neurophysiology, 93(4), 1959–1969.

  22. Kogo, N., Dalezios, Y., Capogna, M., Ferraguti, F., Shigemoto, R., Somogyi, P. (2004). Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat. European Journal of Neuroscience, 19(10), 2727–2740.

  23. Martin, J., Kogo, N., Fan, T. X., Ariel, M. (2003). Morphology of the turtle accessory optic system. Visual Neuroscience, 20(6), 639–649.

  24. Kogo, N., Strecha, C., Caenen, G., Wagemans, J., Van Gool, L. (2002). Reconstruction of subjective surfaces from occlusion cues. In H. H. Bülthoff, S.-W. Lee, T. A. Poggio, C. Wallraven (Eds.), Lecture Notes in Computer Science: BMCV 2002 Proceedings (pp. pp. 311–321). Berlin, Germany: Springer Verlag.

  25. Kogo, N., Fan, T. X., Ariel, M. (2002). Synaptic pharmacology in the turtle accessory optic system. Experimental Brain Research, 147(4), 464–472.

  26. Ariel, M., Kogo, N. (2001). Direction tuning of inhibitory inputs to the turtle accessory optic system. Journal of Neurophysiology, 86(6), 2919–2930.

  27. Kogo, N., Ariel, M. (1999). Response attenuation during coincident afferent excitatory inputs. Journal of Neurophysiology, 81(6), 2945–2955.

  28. Kogo, N., Rubio, D. M., Ariel, M. (1998). Direction tuning of individual retinal inputs to the turtle accessory optic system. Journal of Neuroscience, 18(7), 2673–2684.

  29. Martin, J., Kogo, N., Ariel, M. (1998). Morphology of basal optic tract terminals in the turtle, Pseudemys scripta elegans. Journal of Comparative Neurology, 393(3), 267–283.

  30. Torgerson, C. S., Gdovin, M. J., Kogo, N., Remmers, J. E. (1997). Depth profiles of pH and P-O2 in the in vitro brainstem preparation of the tadpole Rana catesbeiana. Respiration Physiology, 108(3), 205–213.

  31. Kogo, N., Perry, S. F., Remmers, J. E. (1997). Laryngeal motor control in frogs: Role of vagal and laryngeal feedback. Journal of Neurobiology, 33(3), 213–222.

  32. Kogo, N., Ariel, M. (1997). Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system. Journal of Neurophysiology, 78(2), 614–627.

  33. Mclean, H. A., Kimura, N., Kogo, N., Perry, S. F., Remmers, J. E. (1995). Fictive respiratory rhythm in the isolated brain-stem of frogs. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, 176(5), 703–713.

  34. Perry, S. F., Mclean, H. A., Kogo, N., Kimura, N., Kawasaki, H., Sakurai, M., … Remmers, J. E. (1995). The frog brain-stem preparation as a model for studying the central control of breathing in tetrapods. Brazilian Journal of Medical and Biological Research, 28(11-12), 1339–1346.

  35. Kogo, N., Perry, S. F., Remmers, J. E. (1994). Neural organization of the ventilatory activity in the frog, Rana-catesbeiana .1. Journal of Neurobiology, 25(9), 1067–1079.

  36. Kogo, N., Remmers, J. E. (1994). Neural organization of the ventilatory activity in the frog, Rana-catesbeiana .2. Journal of Neurobiology, 25(9), 1080–1094.

  37. Kogo, N., Arita, H. (1990). Invivo study on medullary H+-sensitive neurons. Journal of Applied Physiology, 69(4), 1408–1412.

  38. Arita, H., Ichikawa, K., Kuwana, S., Kogo, N. (1989). Possible locations of ph-dependent central chemoreceptors - Intramedullary regions with acidic shift of extracellular fluid ph during hypercapnia. Brain Research, 485(2), 285–293.

  39. Arita, H., Kogo, N., Ichikawa, K. (1988a). Locations of medullary neurons with non-phasic discharges excited by stimulation of central and or peripheral chemoreceptors and by activation of nociceptors in cat. Brain Research, 442(1), 1–10.

  40. Arita, H., Kogo, N., Ichikawa, K. (1988b). Rapid and transient excitation of respiration mediated by central chemoreceptor. Journal of Applied Physiology, 64(4), 1369–1375.

  41. Arita, H., Kogo, N., Koshiya, N. (1987). Morphological and physiological-properties of caudal medullary expiratory neurons of the cat. Brain Research, 401(2), 258–266.


bottom of page