In preparation
Kogo, N., Kokai, E., Szucs, P., Isomura, Y., Aihara, T. Interconnections of horizontal cells in CA1 stratum oriens. In preparation.
Kogo N. Emergent frequency components by non-linear dynamics of pyramidal cells in visual cortex. In preparation.
Kogo N., Spaas C., Wagemans J., Stuit S., van Ee R. Figure-ground organization interferes with the propagation of perceptual reversal in binocular rivalry. In preparation
Kogo N., Lovik A., Froyen V., Wagemans J. Shape adaptation reveals a crucial difference between modal and amodal completion. In preparation.
​
Published
-
Wang, S. et al. (2022) Loss-of-function variants in the schizophrenia risk gene SETD1A alter neuronal network activity in human neurons through cAMP/PKA pathway Cell Reports 39(5)
-
Kogo N., Froyen V. (2021) How global configurations are reflected in figure-ground perception: large-scale consistencies and neural interactions in border-ownership computation. Psychological Review 128(4), 597-622.
-
Kogo N., Kern, F.B., (2021) Nowotny, T., van Ee, R., van Wezel, R., Aihara, T. (2021) Dynamics of a mutual inhibition circuit between two visual cortical neurons compared to human perceptual competition. Journal of Neuroscience 41(6), 1251-1264.
-
Alp N., Kohler P.J., Kogo N., Wagemans J., Norcia A.M. (2018) Measuring Integration Processes in Visual Symmetry with Frequency-Tagged EEG. Scientific Reports, 8(1), 6969.
-
Vergeer M., Kogo N., Nikolaev A.R., Alp N., Loozen V., Schraepen B., and Wagemans, J. (2018) EEG frequency tagging provides a neural signature of holistic shape representations learned during shape categorization. Vision Research, 152, 91-100.
-
Alp N., Nikolaev A., Wagemans J., Kogo N. (2017) EEG frequency tagging dissociates between neural processing of motion synchrony and human quality of multiple point-light dancers. Scientific Reports, 7, 44012.
-
Alp N., Kogo N., Van Belle G., Wagemans J., Rossion B. (2016). Frequency tagging yields an objective neural signature of Gestalt formation. Brain and Cognition, 104, 15-24. (double first author)
-
Kogo, N., Trengove, C. (2015). Is predictive coding theory articulated enough to be testable? Frontiers Computational Neuroscience, 111.
-
Kogo, N., van Ee, R. (2015). Neural mechanisms of figure-ground organization: Border-ownership, competition and perceptual switching. In Oxford Handbook of Perceptual Organization (pp. 352–372). Oxford: Oxford University Press.
-
Kogo, N., Hermans, L., Stuer, D., van Ee, R., Wagemans, J. (2015). Temporal dynamics of different cases of bi-stable figure-ground perception. Vision Research, 106, 7–19.
-
Kogo, N., Drożdżewska, A., Zaenen, P., Alp, N., Wagemans, J. (2014). Depth perception of illusory surfaces. Vision Research, 96, 53–64.
-
Wagemans, J., Kogo, N. (2013). On perceptual multi-stability in figure-ground organization. In Handbook of Computational Perceptual Organization. New York: Oxford University Press.
-
Kogo, N., Wagemans, J. (2013a). The emergent property of border-ownership and the perception of illusory surfaces in a dynamic hierarchical system. Cognitive Neuroscience, 4(1), 54–61.
-
Kogo, N., Wagemans, J. (2013b). The “side” matters: How configurality is reflected in completion. Cognitive Neuroscience, 4(1), 31–45.
-
Kogo, N., Galli, A., Wagemans, J. (2011). Switching dynamics of border ownership: A stochastic model for bi-stable perception. Vision Research, 51(18), 2085–2098.
-
Kogo, N., Wagemans, J. (2011). What is required for a signal to be qualified as a “grouping” tag? British Journal of Psychology, 102(3), 676–681; author reply 682–683.
-
Dry, M. J., Kogo, N., Putzeys, T., Wagemans, J. (2010). Image descriptions in early and mid-level vision: what kind of model is this and what kind of models do we really need? British Journal of Psychology, 101(Pt 1), 27–32; author reply 41–46.
-
Kogo, N., Van Gool, L., Wagemans, J. (2010). Linking depth to lightness and anchoring within the differentiation-integration formalism. Vision Research, 50(15), 1486–1500.
-
Kogo, N., Strecha, C., Van Gool, L., Wagemans, J. (2010). Surface construction by a 2-D differentiation-integration process: A neurocomputational model for perceived border ownership, depth, and lightness in Kanizsa figures. Psychological Review., 117(2), 406–439.
-
Ariel, M., Kogo, N. (2005). Shunting inhibition in accessory optic system neurons. Journal of Neurophysiology, 93(4), 1959–1969.
-
Kogo, N., Dalezios, Y., Capogna, M., Ferraguti, F., Shigemoto, R., Somogyi, P. (2004). Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors in the rat. European Journal of Neuroscience, 19(10), 2727–2740.
-
Martin, J., Kogo, N., Fan, T. X., Ariel, M. (2003). Morphology of the turtle accessory optic system. Visual Neuroscience, 20(6), 639–649.
-
Kogo, N., Strecha, C., Caenen, G., Wagemans, J., Van Gool, L. (2002). Reconstruction of subjective surfaces from occlusion cues. In H. H. Bülthoff, S.-W. Lee, T. A. Poggio, C. Wallraven (Eds.), Lecture Notes in Computer Science: BMCV 2002 Proceedings (pp. pp. 311–321). Berlin, Germany: Springer Verlag.
-
Kogo, N., Fan, T. X., Ariel, M. (2002). Synaptic pharmacology in the turtle accessory optic system. Experimental Brain Research, 147(4), 464–472.
-
Ariel, M., Kogo, N. (2001). Direction tuning of inhibitory inputs to the turtle accessory optic system. Journal of Neurophysiology, 86(6), 2919–2930.
-
Kogo, N., Ariel, M. (1999). Response attenuation during coincident afferent excitatory inputs. Journal of Neurophysiology, 81(6), 2945–2955.
-
Kogo, N., Rubio, D. M., Ariel, M. (1998). Direction tuning of individual retinal inputs to the turtle accessory optic system. Journal of Neuroscience, 18(7), 2673–2684.
-
Martin, J., Kogo, N., Ariel, M. (1998). Morphology of basal optic tract terminals in the turtle, Pseudemys scripta elegans. Journal of Comparative Neurology, 393(3), 267–283.
-
Torgerson, C. S., Gdovin, M. J., Kogo, N., Remmers, J. E. (1997). Depth profiles of pH and P-O2 in the in vitro brainstem preparation of the tadpole Rana catesbeiana. Respiration Physiology, 108(3), 205–213.
-
Kogo, N., Perry, S. F., Remmers, J. E. (1997). Laryngeal motor control in frogs: Role of vagal and laryngeal feedback. Journal of Neurobiology, 33(3), 213–222.
-
Kogo, N., Ariel, M. (1997). Membrane properties and monosynaptic retinal excitation of neurons in the turtle accessory optic system. Journal of Neurophysiology, 78(2), 614–627.
-
Mclean, H. A., Kimura, N., Kogo, N., Perry, S. F., Remmers, J. E. (1995). Fictive respiratory rhythm in the isolated brain-stem of frogs. Journal of Comparative Physiology a-Sensory Neural and Behavioral Physiology, 176(5), 703–713.
-
Perry, S. F., Mclean, H. A., Kogo, N., Kimura, N., Kawasaki, H., Sakurai, M., … Remmers, J. E. (1995). The frog brain-stem preparation as a model for studying the central control of breathing in tetrapods. Brazilian Journal of Medical and Biological Research, 28(11-12), 1339–1346.
-
Kogo, N., Perry, S. F., Remmers, J. E. (1994). Neural organization of the ventilatory activity in the frog, Rana-catesbeiana .1. Journal of Neurobiology, 25(9), 1067–1079.
-
Kogo, N., Remmers, J. E. (1994). Neural organization of the ventilatory activity in the frog, Rana-catesbeiana .2. Journal of Neurobiology, 25(9), 1080–1094.
-
Kogo, N., Arita, H. (1990). Invivo study on medullary H+-sensitive neurons. Journal of Applied Physiology, 69(4), 1408–1412.
-
Arita, H., Ichikawa, K., Kuwana, S., Kogo, N. (1989). Possible locations of ph-dependent central chemoreceptors - Intramedullary regions with acidic shift of extracellular fluid ph during hypercapnia. Brain Research, 485(2), 285–293.
-
Arita, H., Kogo, N., Ichikawa, K. (1988a). Locations of medullary neurons with non-phasic discharges excited by stimulation of central and or peripheral chemoreceptors and by activation of nociceptors in cat. Brain Research, 442(1), 1–10.
-
Arita, H., Kogo, N., Ichikawa, K. (1988b). Rapid and transient excitation of respiration mediated by central chemoreceptor. Journal of Applied Physiology, 64(4), 1369–1375.
-
Arita, H., Kogo, N., Koshiya, N. (1987). Morphological and physiological-properties of caudal medullary expiratory neurons of the cat. Brain Research, 401(2), 258–266.